Well-Posedness for a One-Dimensional Fluid-Particle Interaction Model

نویسندگان

  • Boris P. Andreianov
  • Frédéric Lagoutière
  • Nicolas Seguin
  • Takéo Takahashi
چکیده

The fluid-particle interaction model introduced by the three last authors in [J. Differential Equations, 245 (2008), pp. 3503–3544] is the object of our study. This system consists of the Burgers equation with a singular source term (term that models the interaction via a drag force with a moving point particle) and of an ODE for the particle path. The notion of entropy solution for the singular Burgers equation is inspired by the theory of conservation laws with discontinuous flux developed by the first author, Kenneth Hvistendahl Karlsen and Nils Henrik Risebro in [Arch. Ration. Mech. Anal., 201 (2011), pp. 26–86]. In this paper, we prove well-posedness and justify an approximation strategy for the particle-in-Burgers system in the case of initial data of bounded variation. Existence result for L∞ data is also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness of a singular balance law

We define entropy weak solutions and establish well-posedness for the Cauchy problem for the formal equation ∂tu(t, x) + ∂x u 2 (t, x) = −λu(t, x) δ0(x), which can be seen as two Burgers equations coupled in a non-conservative way through the interface located at x = 0. This problem appears as an important auxiliary step in the theoretical and numerical study of the one-dimensional particle-in-...

متن کامل

Mixed Systems: ODEs – Balance Laws

We prove the well posedness of mixed problems consisting of a system of ordinary differential equations coupled with systems of balance laws in domains with moving boundaries. The interfaces between the systems are provided by the boundary data and boundary positions. Various situations that fit into this framework are studied, both analytically and numerically. We consider a piston moving in a...

متن کامل

Three-Dimensional Boundary Layer Flow and Heat Transfer of a Dusty Fluid Towards a Stretching Sheet with Convective Boundary Conditions

The steady three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions is investigated by using similarity solution approach. The free stream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are reduced into ordinary differential equations b...

متن کامل

Nonlinear Plates Interacting with A Subsonic, Inviscid Flow via Kutta-Joukowski Interface Conditions

We analyze the well-posedness of a flow-plate interaction considered in [22, 24]. Specifically, we consider the Kutta-Joukowski boundary conditions for the flow [20, 28, 26], which ultimately give rise to a hyperbolic equation in the half-space (for the flow) with mixed boundary conditions. This boundary condition has been considered previously in the lowerdimensional interactions [1, 2], and d...

متن کامل

Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model

In many applications materials are modeled by a large number of particles (or atoms) where any one of particles interacts with all others. Near or nearest neighbor interaction is expected to be a good simplification of the full interaction in the engineering community. In this paper we shall analyze the approximate error between the solution of the simplified problem and that of the full-intera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2014